

Mesh-based tools for land ice simulations

Tim Tautges
Dmitry Karpeev

Argonne National Laboratory

CCSM Land Ice Working Group Summer Meeting Breckenridge, CO June 30, 2010

Outline

- Sisiphus overview
- Mesh-based geometry
- Solver issues

Scalable Ice-sheet Solvers and Infrastructure for Petascale, High-resolution, Unstructured Simulations

Timothy J. Tautges (PI), Barry Smith, Dmitry Karpeev, Jean Utke (ANL)

Non-Newtonian Stokes system:

$$-\nabla \bullet (\eta D \boldsymbol{u}) + \nabla p - \boldsymbol{f} = 0$$
$$\nabla \bullet \boldsymbol{u} = 0$$

with boundary conditions for:

$$(Du - p1) \bullet n = \begin{cases} 0 & \text{free surface} \\ -\rho_w z n & \text{ice-ocean} \end{cases}$$

$$u = 0 & \text{frozen bed}$$

$$u \bullet n = g_{melt}(Tu, ...)$$

$$T(Du - p1) \bullet n = g_{slip}(Tu, ...)$$

Navier, Weerman, or Coulomb power law for g_{slip}

Modeling:

Hp-adaptive FEM in space, fully implicit in time

Preconditioning:

- "Dual-order" over space high-order FEM, preconditioned with low-order linear elements from high-order nodes
- Block-ILU, replacing sub-blocks with physics-based equivalents

Jed Brown (ETH-Zurich), Patrick Heimbach (MIT) Bill Lipscomb (LANL)

Mesh motion:

$$-\nabla \bullet \sigma = 0$$

$$\sigma = \mu \left[2Dw + (\nabla w)^T \nabla w \right] + \lambda tr(\nabla w) \mathbf{1}, \quad w = x - x_o$$
surface: $(\dot{x} - u) \bullet n = q_{pq}, T\sigma \bullet n = 0$

Enthalpy transport:

$$\rho \left[\frac{\partial}{\partial t} \Theta + (u - \dot{x}) \bullet \nabla \Theta \right] - \nabla \bullet \left[\kappa(\Theta) \nabla \Theta + q_D(\Theta) \right] - \eta Du : Du = 0$$
ALE Fourier/Fick Darcy Strain diffusion flow heating

Geometry/mesh:

- Unstructured, hexahedral extruded mesh
- Mesh-based geometry w/ smooth normals for bed, ice surface
- Adaptive mesh near bed, grounding line

Implementation:

- Use component-based solvers (PETSc), tools (ITAPS)
- Higher-level interface to Petsc for expressing physics and physics-based preconditioners
- Use Petsc Data Manager (DM) implementation based on ITAPS mesh interface

SISIPHUS Software Component View

ITAPS In One Slide

Interface relationships:

37k foot view:

Application view:

Task #1: Representation of ice sheet bed, surface as Jakobshavn, before decimation (5M tri)

- 2 primary sources of data:
 - CReSIS flight path data (<< 5km)
 - ISIS (J. Johnson, UMT) data sets (5km)

CRESIS data

- Read as points, elevations
- Triangulate using Triangle
- Decimate

Decimation

- Using Qslim algorithm (Garland & Heckbert, Siggraph '97)
- Implemented on MOAB
- Challenge: noisy data, reasonable run-times

Jakobshavn, after decimation (200k tri)

Thickness, before decimation

Task #2: Smooth tangents, normals on facet-based surface

- C1-continuous facet-based geometric representation to support meshing
 - Owen, White, Tautges, "Facet-based surfaces for 3d mesh generation", 11th IMR, '02)

Task #2: Smooth tangents, normals on facet-based surface

For ice sheet data...

Task #3: Quad meshing on smoothed

Present an iGeom interface representation Can feed directly to quadrilateral mesh generator - 1272. - 317.4 user: iulian Tue Jun 29 08:30:05 2010 1272. - 317.2 -160.2 Max: 1749. Min: -160.2 Size=1km Other mesh algs also apply Need to improve eval speed Size=.5km UU/JU/ IU

Solvers: simplify interaction with mesh MatDD: new PETSc matrix interface

$$M = \sum_{ij} G_i M_{ij} S_j, \quad S_j : V \to \mathfrak{R}^{n_j}, \quad G_i : \mathfrak{R}^{m_i} \to U$$

$$u \overset{G}{\longleftarrow} \begin{pmatrix} u_1 \\ \vdots \\ u_i \end{pmatrix} \begin{pmatrix} M_{11} & \cdots & M_{1j} \\ \vdots & \cdots & \vdots \\ M_{i1} & \cdots & Mij \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_j \end{pmatrix} \overset{S}{\longleftarrow} v$$

- Blocks {M_{ii}} applied, preconditioned, inverted separately
- Block structure can be used recursively, subsystems assembled
- Gather {G_i} and scatter {S_i} encode space splitting
- Enable both factorization (splitting of assembled matrices) and DD (assembly out of blocks) PCs
- Global scatter/gather translates loosely to local/non-local mesh
- iField: local formulation of operators (gradient, integral, etc.) on elements based on local dof arrays

Conclusions

- Moving toward mesh-based representation of ice sheet geometry, read directly from CRESIS or other .nc-based data
- Represented in a form which directly supports mesh generation and geometric (tangent, normal) queries
- Incorporating higher-level support in PETSc for expressing factorization- and DD-based preconditioners